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An algorithm and program have been developed for handling a two-dimensional axially sym-~
metrical problem for thermal conduction in an inhomogeneous region with time-varying bound-
ary conditions; the material releases a latent heat of crystallization over a temperature
range, and the thermophysical characteristics are dependent on temperature.

There are several papers on computer calculation of two-dimensional crystallization processes; an
example has been given of a Peaceman—Rackford solution to a thermal conduction problem [1]. Some results
were presented on electroslag melting. The heat released in crystallization has also been incorporated
[2], while the equations of thermal conduction were solved by finite differences with an explicit scheme con-
taining a set time step subject to restrictions. The present study does not involve such restriction.

The thermal processes in cooling and solidification in a metal mold are considered as a two-dimen-
sional axially symmetric thermal conduction problem; the actual sizes, shape, and design of the mold are
incorporated, together with the various cooling conditions for the different parts of the casting and mold.
The heat transfer in the gap between the casting and mold is reproduced by introducing variable thermal
resistances. The thermophysical characteristics of the materials can vary with temperature, while the
latent heat may be released over a certain temperature range, and the surrounding temperature may alter.

We assume that the mold is filled instantaneously with the liquid metal; it is assumed that there is a
certain given temperature distribution in the mold, support, and casting before cooling starts. The out-
side and inside surfaces of the body may be conical or cylindrical. The mold has a two-layer jacket, with
the inner layer of heat-resisting material and the outer a metal jacket. There may be any relationship be-
tween the sizes of the mold, the support, and the jacket, which allows one to examine castings of various
shapes and weights.

Figure 1 shows the system. There are three regions with different thermophysical characteristics:
the casting (given quantitiescygt?), Ast?). Q, tp. tf, tg). the mold, the support, and the jacket in the cover
ey Ay, t§,), and also the refractory lining @y, (%), Apt9), ti,).

The specific heat cy and thermal conductivity A are dependent on temperature and are given as tables;
the effective thermal conductivities incorporate the convection currents in the liguid. The heat-transfer
coefficients Oegs Qpey Agls and oy, incorporate the heat transfer between the mold and the support (line
eg), between the casting and the lining (on lines pc and cl), and between the casting and the mold (on line
g, Fig. 1).

The loss of heat to the surroundings is incorporated via the heat-transfer coefficients aex, @gigs
agg; the heat transfer from the upper surface along the line ex is represented by ay, which also incor-
porates the thermal resistance of the layer of material 6p having thermal conductivity hp:

Ap
Cox™ = - (1
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_ 1050 The heat transfer at the interfaces between the mold and the
z 585 a/‘ support and jacket are incorporated via additional thermal con-
L (e il DN tact resistances. The heat-transfer coefficient oy, incorpor-
RS " ates ideal thermal contact initially after pouring, when no rea-
te e e b Ed ‘x.:. ' sonably solid crust has formed, and hence there is no gap be-
'+ . : . tween the mold and the casting. When a gap has been produced,
e il g the coefficient is calculated from the following formula, which
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& ol where ky and k, are the emissivities of the casting, mold, and
§' ARGt Ahb absolutely black body, k, = 5.6 J/m?: sec - °K,
8 » - The latent heat of crystallization Q(t) follows an arbi-
s U S g trary n.mc.ie of release,. and the heat I:elease over the range
' (t;—tg)is incorporated in Ac; if Q(t) is linear,
P R Ty T _ Ac = (—2—t . (5)
t4 4+t ddsih
B g ghh, The system is divided into elementary volumes Ar along the
THE At a0 radius and Az in the height; the nodal points at which the tem-
IODDOPE 000 i ] perature was calculated lay at the corners of the elements.
ISSOSSUSHIN dOBE g The distributed heat couplings in a real body were replaced by
TR I discrete conductances between the nodal points (Fig. 2). These
NN ‘::Tf“.‘ * 3 conductances were calculated from the following formulas: in
os0 Xad _,lg]f_e r the radial direction
= ‘ (k== M) e —2) (ri = 1))
‘\i]' = Ty (6)
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Fig. 1. The casting-mold system.
along the z axis
(A + &) (ry oy —rg— 1)1 1)
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Bes= (7

The adjoint thermal capacity at each node was
(f k r i) (ze ’ zm)
A= At cyr ;- (8)

Consider the conditions for heat balance at some point j (Fig. 2); if at instant my -y the temperature
at known j was t™~1, while after a time AT, at the instant 7, = 7yy + AT, it becomes t}n, then the heat
content at this node has altered by

Ac=c; (t;."—l — ). (9)

This change is compensated by the heat flowing in from adjacent nodes on account of the difference
between the temperature at node j and the temperatures at surrounding nodes i, k, e, and m; if the heat
fluxes from the adjacent nodes are denoted by dij» 9kj» dejp 9mjs then the heat-balance equation for a node
will take the form

. ' C; —
Gy Gry =+ Gej + Gmit "A*i- (tr-t—1tm =0. (10)

We express the heat fluxes via the temperature differences and conductances, to get
m ' ! P 1 Cy — —_
Aag (6 — 1) = Moy O — 1) =+ Doy (O — 1)+ s (= 8) + 7L @7~ 1) = 0, (1
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and denote Cj/A'rby Ajj and rearrange the terms to get

z
Al 4 Mpth - Dot + At — Dy + Ay T Ay
A A A = — Ayt
i ¢ 4 Similar equations can be drawn up for all the nodes. The
% l complete system for all the nodes reflects the coupling between the
. g_i’ D Iy temperatures at the nodes at the prev1ous instant Ty -4 and the next
¢ < # instance 7. The unknowns are t{*, t°, t;, ti* ... and are the
"u Ay temperatures at the subsequent instant Tms together with the coef-
9""/| []A”’f ficients Aij, Akj ..., which represent certain thermal conductivi-
2 7 2 ties, while the constant terms (--Ajjtl-n‘i) may be defined from the
g temperatures at the corresponding points at time 7y.;. The solu-
Fig. 2. Nodal point with discrete tion gives the temperature distribution at the nodes at instant
conductances. . T, =T, - AT,

This method enables one to use large time steps AT without restricting the size of the elements, since
the system of equations always satisfies the conditions for heat balance. This results in considerable ac-
celeration relative to computations via the explicit scheme, in which the process becomes unstable, if the
step exceeds a certain size.

The thermophysical characteristics as functions of temperature are incorporated by determining all
the A afresh in accordance with the relationships for ¢y, A, and o as functions of temperature after the
system has been solved each time; the temperature change in the surroundings is incorporated in each
iteration in deriving the constant term.

The coefficient matrix has a strip structure and is symmetrical, which results in considerable econ-
omy in machine store.

An Algol program has been written for the M220 computer; before the machine handles the problem,
the following information must be input: the initial temperature distribution tij(r, z), the surrounding tem~-
perature tg,,(7) as a function of time, the heat-transfer coefficients between the casting and the mold gy,
and the air agjy, tables for A(t) and cy(t), the temperatures for onset and completion of erystallization t;
and tg, and the latent heat of crystallization Q. The sizes of casting and mold are defined by supplying the
radii r; on the lines ad, bo, and ¢s, while the heights are divided into elementary volumes; also logic con~
ditions are supplied that reflect the disposition of the various parts.

Figure 3 shows the block diagram for the process; in step 2, the store receives the initial tempera-
ture distribution; in a subsequent step 3, the radii rjare calculated, together with the heights zj. In step
4 the thermophysical parameters are selected from the table in accordance with the temperature. If the
current temperature lies in the range t;~tg, then one incorporates the latent-heat release in steps 5 and 6.
The heat-transfer coefficients are selected in 8 in accordance with the temperature or the current time,
Then the discrete thermal conductances are calculated, in steps 10-12, and finally the system is solved
by Gauss's method.

Figure 4 shows the solution for the temperature in a casting of weight 100 tons; the initial data were
the surrounding temperature t, = 50°C, initial temperatures of mold ty = 150°C, casting tg = 1500°C, lig~
uidus temperature t; = 1500°C, sohdus tg = 1450°C, latent heat Q = 201.12- 107 J/m3, specific heat of cast
iron yo = 6950 kg/m?, specific heat of flrebrlck v¥e; = 1800 kg/m?, thermal conductivity of cast iron A, = 37.2
J/m - sec - deg, the same for firebrick Ap = 0.832 + 0.00058 t° J/m - sec - deg, specific heat of cast iron c¢
= 628.5 J/kg - deg, the same for firebrick cgj =878 + 0.00065 t° J/kg - deg, heat-transfer coefficient for the
upper surface of the casting with the air aypy = 46.5J /m?. sec - deg, and thermsdl capacity and thermal con~
ductivity of steel as in Table 1, with the heat-transfer coefficients for the lower surface as in Table 2, the
heat-transfer coefficient between casting and mold as in Table 3, together with the same for the side sur~
face and the working time step, while the casting size is given in Fig. 1.

To obtain the maximum accuracy with a restricted number of elements, one always uses in the two~
dimensional case a nonuniform division in radius and height; calculations on castings have previously been
performed with 22 steps along the radius and 34 in height. Improved methods and accumulated experience
have enabled us now to obtain good accuracy with 16 steps along the radius and 22 in height. In that case
one does not need to use the M-220 tape store, while the running time for 1 time step is 2 min.
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Fig. 3. Block diagram of the calculation scheme: 1) input data (10 — 2); 2) initial
temperature distribution input; 3) calculation of R and dR for layers; 4) table read-
out and interpolation for y(T°) and A(T°) for casting; 5) test for Tg =T =T 6) la-
tent heat release A®)a¢; 7) table readout and interpolation for y(T°) and A(T°) for
mold; 8) table readout and interpolation for aex, a4, asid, Ops, g; and aeg; 9)
table readout and interpolation for T (°C) of surroundings; 10) calculation of Af i+
Ay, 5 Ai,j5 11) calculation of ASp-m and Agypg; 12) formulation of the matrix ele~
ments for the system of algebraic equations; 13) solution of system of linear alge-
braic equations; 14) printout of T°, current time, and other parameters; 15) test
for end, 7 < T T°< Tp 16) halt.

Fig. 4. Movement of the solidus line and distribution of the temperature (°C) at
10 h after pouring.

The scope for using a large time step enables one to calculate the complete solidification in 30-40
steps; at the start, the step can be a fraction of a minute, increasing subsequently to several hours.

At the same time, the same method was used to write a program for one-dimensional axially sym-
metrical cases, This program in the one-dimensional form reflects all the above heat-transfer conditions,
It is also possible to use a very detailed division in that case along the radius and small time steps, which
provide very high accuracy.

Comparison with two-dimensional calculations has shown that the one-dimensional calculation closely
reproduces the temperature distribution along the radius at the mid point in the height, so the one-dimen-
sional program can be used in preliminary analysis before handling a new two-dimensional problem, When
the two-dimensional case has to be considered, the restrictions on store size and running time do not allow
one to use very small steps, so each new casting is considered by solving the one-dimensional problems to
determine the minimum number of elements required in the two-dimensional region to provide the required
accuracy.
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TABLE 1. Temperature Dependence of ¢y, and A, (Casting)

1200 1449 1430 1560 1600

f, °C i 0 ‘ 20

3— N -
<Y, J/m”-deg ’3618070 3618070 | 5028000 | 5185130 | 5185130 | 5866000 | 5866000

A 'm .sec -de
c I/ g 29,1 25,6 22,8 21,65 20,02 18,62 17,81

TABLE 2. Temperature Dependence of ay4

t, °C ‘ 0
|

500 700

1200 } 1400 ’ 1600

900 1000

|

l
| ' |
69,141 107.9 132,68 i 194,4

ccad;‘J/m2 sec

42,13
-deg

272,35 | 370,12

42,13

TABLE 3. Dependence of agy, gig and A, on Working Time

T h 0 | 0,01 1 0,033 0,1 0,3 1,6 2,0 10,0 30,6
’ | |

I
\ .

Oopp, I/m” -sec 698,3!346,8} 346,8 |346,8|258,4226,9] 207,17 | 181,57 [181,57
|

*deg
. 2 |
asfégj/m e | yso 14,00 14,9 | 14,9 (26,770 34,9 | 38,41 | 39,57 | 36,1
ATy, B ‘0,002!0,002; 0,00833 10,025 0,075 0,25 | 0,5 o |10
' ¢ i . ! l

Solutions obtained from this algorithm have been compared with the exact solutions due to Lykov [3],
and the agreement is good.

Castings of weights 4, 7, 52, and 169 tons were used in experiments; the experimental conditions
were reproduced closely on the computer, which provided considerable experience on the fitting of thermo-
physical characteristics cy, A, and ¢ to provide good agreement with experiment. The surface tempera~
ture of the mold as calculated by computer differed from the measured value by not more than 25-30°C,

The two-dimensional calculations were compared with the actual structures of the castings to relate
the latfer to the temperature distribution during solidification.

This method of calculating the castings enables one to examine the effects of all aspects of the mold
design and dimensions on the result, together with the effects of the thermophysical characteristics of the
materials and other technical features.

NOTATION
a is the heat transfer coefficient;
Qem is the heat transfer coefficient between casting and mold;
Cprads %eonys %cond are the radiation, convection, and conduction heat transfer coefficients;
Q is the latent heat of solidification;
tp is the pouring temperature;
i : is the liquidus temperature;
tg is the solidus temperature;
tin is the initial temperature;
t is the temperature;
ey is the specific heat;

A is the specific thermal conductivity;
A is the thermal conductivity;

q is the heat flux;

r is the coordinate along r axis;

Z is the coordinate along z axis;
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Az is the step along z axis;
Ar is the step along r axis;
T is the current time;
AT is the time step;
F,, Fy are the surface areas;
c is the heat capacity;
Ac is the heat capacity variation;
Op - is the thickness of filling layer.
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